$A B C$ conjecture

Hidetomo Tohmori 2023.10.01
$A B C$ conjecture states that there are natural numbers A, B and C that satisfy equation (1.1) and inequality (1.2) below, but there are no natural numbers A, B and C that satisfy inequality (1.3).
p is a prime number (≥ 5) $\quad r$ is a natural number
Natural numbers A, B and C are relatively prime

$$
\begin{gather*}
A+B=C \tag{1.1}\\
\operatorname{rad}(A B C)<C \tag{1.2}\\
\operatorname{rad}(A B C)^{2}<C \tag{1.3}\\
A=\operatorname{rad}(A)=p=C-B \quad \operatorname{rad}(B C)=r
\end{gather*}
$$

For inequality (1.2) to hold, the following inequality must hold.

$$
\operatorname{rad}(A B C)=p r<C \quad p<\frac{1}{r} C
$$

For inequality (1.3) to hold, the following inequality must hold.

$$
\operatorname{rad}(A B C)^{2}=p^{2} r^{2}<C \quad p<\frac{1}{r} C^{\frac{1}{2}}
$$

The maximum value of prime number p that satisfies equation (1.1) and inequalities (1.2) and (1.3) is determined by the minimum value of $r=\operatorname{rad}(B C)$.

However, the minimum value of r is 6 when B and C are powers of 2 or 3 .

Then, the equation (1.1) can be rewritten as follows.

$$
\begin{equation*}
p+3^{j}=2^{n} \quad p+2^{n}=3^{j} \tag{1.4}
\end{equation*}
$$

In order for the inequalities (1.2) and (1.3) to hold, the following inequalities (1.5) and (1.6) must hold.

$$
\operatorname{rad}(B C)=2 \times 3=r=6
$$

$$
\begin{array}{ll}
\operatorname{rad}(A B C)=6 p<C & p<\frac{1}{6} C \\
\operatorname{rad}(A B C)^{2}=36 p^{2}<C & p<\frac{1}{6} C^{\frac{1}{2}} \tag{1.6}
\end{array}
$$

Then, $A B C$ conjecture can be rephrased as follows.

There are prime number p and natural numbers j and n that satisfy equation (1.4) and inequality (1.5) above, but there are no prime number p and natural numbers j and n that satisfy inequality (1.6).

The above $A B C$ conjecture is proven below.
There always exist real numbers m, δ and α that satisfy the following inequality.

$$
e^{m}<B<e^{m+\delta} \quad e^{m+\alpha}<C<e^{m+\alpha+\delta}
$$

Then the following inequality holds.

$$
\begin{aligned}
& e^{m+\alpha}-e^{m+\delta}<C-B=p<e^{m+\alpha+\delta}-e^{m} \\
& e^{m}\left(e^{\alpha}-e^{\delta}\right)<p<e^{m}\left(e^{\alpha+\delta}-1\right) \\
& \quad 0<p=C-B \quad e^{\alpha}-e^{\delta}=\beta>0 \quad \beta \text { is a real number. } \\
& \beta e^{m}<p<e^{m}\left(e^{\alpha+\delta}-1\right)
\end{aligned}
$$

When δ is extremely small, the following inequality holds.

$$
\beta e^{m} \approx \beta B<p<e^{m}\left(e^{\alpha+\delta}-1\right)
$$

Then the following inequality holds.

$$
\begin{aligned}
& \beta B=\beta(C-p)<p \\
& \beta C<p+\beta p=(1+\beta) p \\
& \frac{\beta}{1+\beta} C<p
\end{aligned}
$$

However, when $A B C$ conjecture holds, the following inequality (1.6) does not hold.

$$
\begin{equation*}
\operatorname{rad}(A B C)^{2}=36 p^{2}<C \quad p<\frac{1}{6} C^{\frac{1}{2}} \tag{1.6}
\end{equation*}
$$

Then the following inequality does not hold.

$$
\begin{aligned}
& \frac{\beta}{1+\beta} C<\frac{1}{6} C^{\frac{1}{2}} \\
& \left(\frac{\beta}{1+\beta}\right)^{2} C^{2}<\frac{1}{36} C \\
& C<\frac{1}{36}\left(\frac{1+\beta}{\beta}\right)^{2}
\end{aligned}
$$

Since there is no limit to the size of natural number C, the above inequality does not hold.

Therefore, $A B C$ conjecture holds.

In the following five examples, the inequality (1.2) holds,
but the inequality (1.3) does not.
From these five examples, $A B C$ conjecture is presumed to be reasonable.

Example 1

$$
\begin{array}{lcc}
A=5 & B=3^{3}=27 & C=2^{5}=32 \\
\operatorname{rad}(A)=5 & \operatorname{rad}(B)=3 & \operatorname{rad}(C)=2 \\
\operatorname{rad}(A B C)=5 \times 2 \times 3=30<32=2^{5}=C
\end{array}
$$

Example 2

$$
\begin{aligned}
& A=13 \quad B=3^{5}=243 \\
& \operatorname{rad}(A)=13 \quad \operatorname{rad}(B)=3 \quad \operatorname{rad}(C)=2 \\
& \operatorname{rad}(A B C)=13 \times 2 \times 3=78<256=2^{8}=C
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& A=139 \quad B=2^{11}=2048 \quad C=3^{7}=2187 \\
& \operatorname{rad}(A)=139 \quad \operatorname{rad}(B)=2 \quad \operatorname{rad}(C)=3 \\
& \operatorname{rad}(A B C)=139 \times 2 \times 3=834<2187=3^{7}=C
\end{aligned}
$$

Example 4

$$
\begin{array}{lcc}
A=6487 & B=3^{10}=59049 & C=2^{16}=65536 \\
\operatorname{rad}(A)=6487 & \operatorname{rad}(B)=3 & \operatorname{rad}(C)=2 \\
\operatorname{rad}(A B C)=6487 \times 3 \times 2=38922<65536=2^{16}=C
\end{array}
$$

Example 5
$A=7153 \quad B=2^{19}=524288 \quad C=3^{12}=531441$
$\operatorname{rad}(A)=7153 \quad \operatorname{rad}(B)=2 \quad \operatorname{rad}(C)=3$
$\operatorname{rad}(A B C)=7153 \times 2 \times 3=42918<531441=3^{12}=C$

